

DPP - 2 (KTG)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/57

Video Solution on YouTube:-

https://youtu.be/6oH-54BLk88

Written Solution on Website:- https://physicsaholics.com/note/notesDetalis/32

Q 1. Four molecules have speeds $2 \mathrm{~km} / \mathrm{sec}, 3 \mathrm{~km} / \mathrm{sec}, 4 \mathrm{~km} / \mathrm{sec}$ and $5 \mathrm{~km} / \mathrm{sec}$. The root mean square speed of these molecules (in $\mathrm{km} / \mathrm{sec}$) is:
(a) $\sqrt{\frac{27}{2}}$
(b) $\sqrt{27}$
(c) 3.5
(d) $3 \sqrt{3}$

Q 2. At what temperature will the particles in a sample of helium gas have an rms speed of $1 \mathrm{~km} / \mathrm{s}$?
(a) $160^{\circ} \mathrm{C}$
(b) $222 K$
(c) 160 K
(d) $222^{\circ} \mathrm{C}$

Q 3. The temperature of a gas is increased from $27^{\circ} \mathrm{C}$ to such an extent that its rms speed be double the speed at $27^{\circ} \mathrm{C}$. The final temperature will be
(a) $927^{\circ} \mathrm{C}$
(b) $250^{\circ} \mathrm{C}$
(c) $600^{\circ} \mathrm{C}$
(d) $1200^{\circ} \mathrm{C}$

Q 4. At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the rms speed of a helium gas atom at $-20^{\circ} \mathrm{C}$? (atomic mass of $\mathrm{Ar}=$ 39.9 u , and of $\mathrm{He}=4.0 \mathrm{u}$)
(a) $2.52 \times 10^{3}{ }^{\circ} \mathrm{C}$
(b) $2.52 \times 10^{3} \mathrm{~K}$
(c) $25.2 \times 10^{3} \mathrm{~K}$
(d) 25.2×10^{3}

Q 5. $\mathrm{N}(\leqslant 100)$ molecules of a gas have velocities $1,2,3, \ldots \ldots . . \mathrm{N} \mathrm{km} / \mathrm{s}$ respectively. Then ratio of rms speed and average speed is:
(Given: The sum of squares of the first n natural numbers $=\frac{n(n+1)(2 n+1)}{6}$
(a) 1
(b) $\sqrt{\frac{(2 N+1)(N+1)}{6 N}}$
(c) $\sqrt{\frac{(2 N+1)(N+1)}{6}}$
(d) $2 \sqrt{\frac{(2 N+1)}{6(N+1)}}$

Q 6. Find the ratio of the mean speed of hydrogen molecules to the mean speed of nitrogen molecules in a sample containing a mixture of the two gases
(a) 14
(b) $\sqrt{14}$
(c) $\frac{1}{28}$
(d) $\frac{1}{\sqrt{14}}$

Q 7. The mean speed of the molecules of a hydrogen sample equals the mean speed of the molecules of a helium sample. Calculate the ratio of the temperature of the hydrogen sample to the temperature of the helium sample
(a) $\frac{1}{2}$
(b) 2
(c) $\frac{1}{4}$
(d) 4

Q 8. The ratio of rms speed of an ideal gas molecules at pressure p to that at pressure $2 p$ is
(a) $\frac{1}{2}$
(b) 2
(c) $\frac{1}{\sqrt{2}}$
(d) $\sqrt{2}$

Q 9. In a closed rigid container an ideal gas is filled. If the gas is heated, the graph of pressure (P) v/s root mean square speed (rms) will be :
(a)

(b)

(c)

Q 10. A gas is filled in a rigid container at pressure P_{0}. If the mass of each molecule is halved keeping the total number of molecules same and their r.m.s speed is doubled then find the new pressure
(a) $\sqrt{2} P_{0}$
(b) $3 P_{0}$
(c) $\sqrt{3} P_{0}$
(d) $2 P_{0}$

Q 11. At what temperature most probable speed of SO_{2} molecule have the same value as root mean square speed of O_{2} molecules at 300 K ?
(a) 150 K
(b) 600 K
(c) 750 K
(d) 900 K

Q 12. Most probable velocity, average velocity and root mean square velocity are related as:
(a) 1:1.128: 1.224
(b) $1: 1.128: 1.424$
(c) $1: 2.128: 1.224$
(d) $1: 1.428: 1.442$

Answer Key

Q. 1	a	Q. 2	c	Q. 3	a	Q. 4	b	Q. 5	d
Q. 6	b	Q. 7	a	Q. 8	c	Q. 9	b	Q. 10	d
Q. 11	d	Q.12 a							

